MTH 530, Abstract Algebra I (graduate) Fall 2012 ,HW number THREE (Due: Sat. at 1pm October 20)

Ayman Badawi

QUESTION 1. (i) Let G be an Abelian group with an odd number of elements. Prove that the product of all elements of G is the identity.
(ii) Let N be a normal subgroup of a group $(G, *)$. If H is a subgroup of G , then prove that $N * H=\{n * h \mid n \in N$ and $h \in H\}$ is a subgroup of G .
(iii) Give me an example of a group $(G, *)$ such that G has two subgroups H and N such that $|N|=|H|=2$ but $H * N$ is not a subgroup of G.
(iv) Let N, H be normal subgroups of a group $(G, *)$. Prove that $N * H=\{n * h \mid n \in N$ and $h \in H\}$ is a normal subgroup of G.
(v) Given $H=A_{3} \oplus\{0,3\}$ is a subgroup of the non-abelian group $G=S_{3} \oplus Z_{6}$. Find all distinct left and right cosets of H inside G. Can we conclude that H is a normal subgroup of G ? (the answer should be yes). Hence G / H is a group. Prove that G / H is a cyclic group and hence abelian.
(vi) I told you that $\left|A_{n}\right|=n!/ 2(\mathrm{n}>1)$. Now let us prove it. You know that A_{n} is a subgroup of S_{n}, so let O_{n} be the set of all odd permutation of S_{n}. Show that $O_{n}=\left(\begin{array}{ll}1 & 2\end{array}\right) o A_{n}$.
(vii) Let $a \in S_{4}$. Find all possibilities for $|a|$. Note that $6,8,12$ are factors of 24 . So from your answer, is the following statement right? If G is a finite group of order n and $m \in Z^{+}$such that $m \mid n$, then G has an element of order m.
(viii) Let $f=\left(\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right) o(43512)$ find $|f|$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

